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Abstract

In this paper, the storage capacity of the Q-state complex phasor neural network is analysed with
the signal-to-noise theory. The results indicate that the storage capacity of the model approaches
that of the Hopfield model if the number Q is small; while the storage capacity is proportional to
Q7% if Q is large.
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1. Introduction

One of the important applications of the neural computer of the future is to recognise
the multistate patterns associationally. But until recently most of the theoretical attention
was concentrated on the models having either binary variables or scalars constrained to
the unit interval by sigmoidal nonlinearities [1-7]. Regardless of whether the interest
lies in application or theory, it is rather important to set up the multistate neural network
models to process the multistate gray or color patterns. Noest proposed that the neuron
state could be a complex number, and set up the complex phasor neural networks [8,9].
For discrete state phasor neural networks, the Q-state signals are represented by QO
discrete phasor variables uniformly distributed on the unit circle. Kanter suggested the
Q-state Potts-glass neural network model [10], in which each neuron is viewed as a
Pott spin and defined as a vector, pointing in Q directions which span a hypertetrahedron
in RC-space. The Q-state integer neural network model [11] is discussed by Rieger,
in which Q-state signals are represented by Q integers. By introducing the 2"-element
number into the Hopfield model, Shuai suggested the 2"-element number neural network
model [12,13].
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The discrete O-state complex neural network model [9,14] is an extended Hopfield
model [1] and the four-state complex neural network model [15]. Such a model can
describe natural or artificial networks of biological, chemical, or electronic limit-cycle
oscillators with Q-fold instead of circular symmetry, or similar optical computing devices
using a phase-encoded data representation. In any event, it is very likely even now that
technical implementations of phasor models in optical hardware are feasible [9,14].
The complex phasor model is a more novel but also less studied model compared with
other multistate models [10,11]. One of reasons is that there is no suitable treatment
for the complex number with equilibrium statistical mechanics. But besides a statistical
mechanics prescription [2-4], the signal-to-noise theory is also a popular treatment of
the neural network [5-7]. In this paper, after a simple introduction of the complex
phasor neural network model with the Dirac symbol representation, the signal-to-noise
theory is used to analyse the storage capacity of the model.

2. The Dirac expression of the model

By introducing the complex plane rotation into the neural network model, the complex
phasor model [9] can be set up. The state of the neuron is defined as a rotation operator
and can be expressed as follows:

§=elnath) = [p]. (1

Here @ = 27r/(, in which Q is the constancy integer, and the number n =0,1,...,0—-1.
The angle B is the constancy angle, and 0 < 8 < 27/Q. One can see that the values of
the neuron are Q dots uniformly distributed in the unit circle, and simply expressed as
[n].

Suppose there are N neurons and M patterns $* = ju)(u = 1,2,..., M) stored in
the network. Here with the representation of the Dirac symbol, the stored patterns are
regarded as basic vectors. The synaptic connection matrix is given as the sum of the
projection operators of basic vectors:

J= ") ul. (2)

p=l

One can easily see that the connection matrix J is a Hermitian matrix: J = J*. If a Q-
state pattern |S) is put into the network, the energy of the model [8,14].is E = (S|J|S).
The dynamics of the model depends only on the effective local field vector | H) expressed
as

|H) = J|S). (3)

Actually the effective local field H; is not the normalized rotation operator. The normal-
ized local fields h; can be simply expressed as h; = H;/|H;| = [x;]. Here x; is a real
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number, and the rotation angle of the local fields is expressed as x;a@+ B. The nonlinear
dynamics of the neuron is defined as follows:

Si(t+1) =6[x;] = [n], if —3<m—x<j. 4)

Obviously, we have n; =0,1,...,0Q — 1. One can see that the function @ transforms the
local fields h;(t) to its nearest neuron state.

3. The storage capacity of the model

Now the storage capacity of the complex phasor neural network is discussed with
the signal-to-noise theory with the thermodynamic limit in which N, M — oo and the
storage capacity v = M/N finite. If one of the stored patterns |v} is put into the network,
the local field vector can be expanded as follows:

|H) = Nlp) + > (ulv) ). (5)

HnEY

Clearly, in the expanded expresstion the local field is divided into two parts: the first
term is the signal while the second term the noise. The noise term can be summed up
as a complex number K exp(iw). Then the local fields can be rewritten in terms of each
component with exponent representation respectively as

H; = Nexp(i6!) + K;exp(iw;). (6)

In the signal term, 67 is the rotation angle related with the ith pixel in the vth stored
pattern and N is the weight of iteration to the state |v). Due to the random character
of the stored patterns and their independence of each other, i.e, (v|u) ~ N&,,, it is
reasonable to suppose that the noise term K; is the module whose average value is 0
and the mean square error can be expressed as o = /N(M — 1) ~ v/NM containing
the Gauss distribution as follows

2 2
() =/ —exp (—5'55) (7)

The angle w; is uniformly distributed in the angle range [0, 27).
Because the model is symmetric under the rotation operator, without loss of generality,
we can suppose that 87 = 0, then

H, =N+K; exp(iw,-) = |H,l exp(quJ (8)

According to Eq. (4), the condition that the neuron i can be iterated correctly is
—-7/Q < ¢ < w/Q. Based on the view of geometry, which is shown in Fig. 1, N is
expressed as the vector OA on the x-axis. The noise term K;exp(iw;) is expressed as
the vector AB. The length of the vector AB follows a Gauss distribution, and the angle
ZxAB is w;. Then H; is the sum of the vectors OA and AB, i.e, OB = OA + AB. Now
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according to this geometry, the condition —7/Q < ¢; < 7/Q means that —7/Q <
ZAOB < 7/Q, i.e, point B must fall into the sector ZCOD.

So the probability that the neuron i is able to iterate correctly equals the probability
that point B falls into the sector ZCOD, and then is expressed as:

R N
=/f(r) dr+/(1 - % arccos(R/r)) f(r)dr
0 R

+/ (1 - % arccos(R/N) — 711_ arccos(R/r)) f(r)dr. (9)
N

Here, the first term is expressed as the probability that point B falls in the circular area
(1) with center at A and radius R, as shown in Fig. 2 shaded with dotted lines. The
second term is expressed as the probability that the point B falls in the area (2) shown
in Fig. 2 shaded with inverse-oblique lines, consisting of the intersection of the sector
ZCOD and the circlular band with center at point A, inner radius R, and outer radius
N. The third term is expressed as the probability that the point B falls into the area (3)
shown in Fig. 2 shaded with oblique lines, consisting of the intersection of the sector
ZCOD and the circlular band area with center at point A, inner radius N, and outer

Fig. 1. The geometrical interpretation of the Eq. (8). The local field H; is the vector OB = OA + AB. To
iterate correctly means that the spot B must fall into the sector ZCOD.

Fig. 2. The probability P can be divided into three parts: the circular area (1) shaded with dotted lines, the
area (2) shaded with inverse-oblique lines, and the area (3) shaded with oblique lines.
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radius co. Here, R = Nsin(#/Q) is the radius of the circle tangent to sector ZCOD
shown in Fig. 2. The probability P can be rewritten as the follows:

oo N
P=/f(r) dr—/% arccos(R/r) f(r)dr
0 R
—/—; arccos(R/N) f(r) dr-/% arccos(R/r) f(r)dr. (10)
N N

Especially when Q =2, we can let the state of the neuron be S = +1. If the boundary
between two evolution areas is the i-axis in the dynamics equation, the neural network is
just the Hopfield neural network model [1]. According the signal-to-noise theory [5,6],
the storage capacity of the Hopfield model is a = % InN.

Now the expression of the storage capacity of the complex phasor neural network
with Q > 2 is discussed. If N is very large, we can write

(o o]

/% arccos(R/N) f(r) drz/;lr- arccos(R/r) f(r)dr. (11)
N

N

Then the probability of the network can be expressed as
2 oo
P=1—;/arccos(R/r) f(r)dr. (12)
R

When r varies from R to co, arccos(R/r) varies from O to #r/2; and the computer
numerical simulation result indicates that the change of P mainly depends on the
change of the function f(r). So the function arccos(R/r) can be replaced by a constant
coefficient A with 1/2 < A < /2. We can move A outside the definite integral.
Therefore the expression of the probability P can be approximated by

24 T A R?
P=1—7/f(r)dr=1——;ll—\/l—exp<—m)]
R
EPREELY PPN P _ 1\ 2™
=1 77_{1 \/1 exp[( 2‘y>sm Q}} (13)

The error probability is p = 1 — P. The condition of the single neuron iterating correctly
is p — 0. If the number of error components follows approximately the Poisson dis-
tribution, then the probability of the correct components, i.e, the probability that |S) is
indeed a stable attractor, is given approximately by the expression « = exp(—Np). Now
suppose we require that this probability be a fixed number very near 1; then inverting
the preceding expression one can get p = C/N, where C = — In «. This means that the
storage capacity of the network can be obtained as:
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)

_ _sin (7m/Q) . (14)
2 In(NA/=C)

Now as C, A are fixed, the relationship of the storage capacity with the neuron number

and the neuron state value can be written as

o sin2(1r/Q).

15
2InN (15)

The result indicates that the storage capacity reduces with the increasing of Q. We can
interpret that result by considering the geometry shown in Fig. 1: as Q increases, the
area of the sector ZCOD decreases, i.e, the probability that point B falls into the sector
ZCOD decreases.

As we can see, the storage capacity approaches that of the Hopfield model, i.e, y —
% InN as Q@ — 2. For practical purposes, the recognition the high precision patterns
commonly used in computers is more important, For the complex neural network model
with large neuron state value Q, the storage capacity is

w2
A 16
Y 207N (16)
The result indicates that the storage capacity is inversely proportional to Q% with Q
large. An interpretation of this result is given as follows: When Q is large, the area of

the sector ZCOD is very small. Therefore one can ignore the second and the third terms
of Eq. (9), i.e,

R
P= /f(r) dr = /1 —exp(—72/2yQ?). (17)
(1]

To keep the probability P — 1 leads to y < Q2.

The results obtained here are quite different from those of Noest. By analysing the
evolution of the overlaps, which is defined as the similarity of a network state to the
patterns, Noest obtains in Ref. [9] the maximal memory capacity of the model as
follows:

y = (Q*/4m) sin*(7/Q). (18)

Then the maximal memory capacity converges for large Q to the value 7/4.

Actually, from the different results obtained for the storage capacity of the Hopfield
model using a different analysis, namely signal-to-noise theory [5,6] and statistical
dynamics [2], one can see that the signal-to-noise theory defines a more restrictive
approach to the memory capacity. It requires the stored patterns to be attractors of the
network, provided no errors are introduced by interference among them.
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4. Conclusion

In this paper, the storage capacity of the discrete complex phasor neural network
model is discussed based on the signal-to-noise theory. A more restrictive result is
obtained for the storage capacity. As we know, there exists no suitable treatment of
complex numbers with equilibrium statistical mechanics providing a popular approach
to the real neural network models [2-4]. We hope that a complex-number statistical
approach can be set up, not only to analyse the complex neural network, but also to
enrich the statistical mechanics, offering some new ideas or results for the study of real
neural networks and spin glasses.
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